REST API

Kay Ashaolu - Instructor
Aishwarya Sriram - TA

Chapter 2: A Full Python
Refresher

Python Decorators Demystified

e |Learn how decorators modify function behavior
e Secure functions without code duplication
e Prepare for integrating these ideas into REST AP|

security

What Are Python
Decorators?

e Definition: Functions that wrap other functions to
extend or modify behavior.
e Key Benefits:

= Eliminate repetitive code (e.g., security checks)
= Enhance readability and maintainability

e Basic Concept: A decorator takes a function as
input and returns a modified function.

A Basic Decorator
Example

e Goal: Secure a function so only admins can call it.
e Example Code:

000
1 make_secure(func):
2 secure_function(*args, **kwargs):
3 user|["access level"] == "admin":
4 func(*args, **kwargs)
5
6 f"No admin permissions for {user['username']}"
7 secure_function
8
9
10 get_admin_password():
11 "1234"

e Qutcome: get admin password() now performs
an access check.

Enhancing Decorators
with "@" Syntax

e "At" Syntax: Simplifies applying decorators.

000

1

2 get_admin_password():
3 "1234"

e Preserve Metadata: Use functools.wraps to
retain the original function’'s name and docstring.

functools
make_secure(func):

secure_function(*args, **kwargs):
user|["access level"] == "admin":
func(*args, **kwargs)

f"No admin permissions for {user['username']}"
secure_function

O oo JoO0 b WD -

Chapter 3: Your First
REST API

Building a RESTful Web Service with Flask

e |earn to create endpoints and handle JSON data.

e Develop a simple in-memory data store.

e Understand HTTP methods, status codes, and
testing.

Setting Up Your
Development
Environment

e Create a Virtual Environment:

1 python3.10 -m venv .venv

e Activate the Environment: (Editor-specific
configuration)
e Install Flask:

1 pip install flask

e Tip: Use your favorite IDE configured with the
correct interpreter.

Initializing a Flask
Application

e File: app.py
e Basic Boilerplate:

1 flask Flask, request
2 app = Flask(_name)

e Purpose: Set up the app and prepare to define
endpoints.

Running Your Flask App

e Command: flask run
e What Happens:

= Flask looks for app.py and an app variable
named app.
m The serverrunsathttp://127.0.0.1:5000

e Note: Restart the server after code changes.

Creating an In-Memory
Data Store

e Concept: Use Python lists/dictionaries to store data
temporarily.
e Example Data Structure:

1 stores = |

2 {

3 "name": "My Store",

4 "items": |

5 {"name": "chair", "price": 15.99}
6]

7 }

8 1

e Usage: Simulate a database for prototyping your
API.

Defining the GET /store
Endpoint

e Objective: Return all store data as JSON.
e Endpoint Code:

L
1

2 get stores():
3 {"stores": stores}

e Flask Magic: Automatically converts Python
dictionaries to J]SON.

What is JISON?

e Definition: JavaScript Object Notation, a
lightweight data interchange format.
e Structure:

= Key-value pairs (similar to Python dictionaries)
m Supports arrays, nested objects, and various
data types

e Importance: Standard format for API
communication.

JSON vs. Python
Dictionaries

e JSON:
= A string formatted in a specific way.
m Uses lowercase true/false and double quotes.
e Python Dictionary:

= An in-memory data structure.
= Uses Python's True/False and single/double
quotes.

e Conversion: Flask automatically serializes
dictionaries to JSON.

Testing Your REST API:
Tools and Techniques

e Why Test?

= Ensure endpoints work as expected.

m Catch errors early during development.
e Tools:

® |[nsomnia
® Postman
= Browser (for simple GET requests)

e Tip: Start with manual exploratory testing.

Using Insomnia to Test
GET Requests

e Setup:

m Create a new request in Insomnia.
= Set the HTTP method to GET.
= URL: http://127.0.0.1:5000/store

e What to Expect:

= |SON response containing your store data.
= Ability to view and debug response payloads.

Creating a Store: POST
/store Endpoint

e Objective: Allow clients to add new stores.

e Client Action: Send a JSON payload with the store
name.

e Example JSON:

wN =

{
"name": "My New Store"
}

POST /store Endpoint
Implementation

e Endpoint Code:

}

stores.append(new_store)
new_store, 201

o0
1
2 create_store():
3 request data = request.get json()
4 new_store = {
5 "name": request data["name"],
6 "items": []
7
8
)

e Explanation:

= Extract JSON from the request.

= Append the new store to the stores list.

= Return the new store with HTTP status 201
(Created).

Creating ltemsin a
Store: Dynamic Routes

e Goal: Add items to a specific store.

e Dynamic URL: Capture the store name from the
URL.

e Endpoint Pattern: POST /store/<name>/item

e Client Sends: JSON payload with item details
(name and price).

POST
/store/<name>/item

e Implementation:

00
1
2 create_item(name):
3 request data = request.get json()
4 store stores:
5 store["name"] == name:
6 new_item = {
7 "name": request data["name"],
8 "price": request data["price"]
9 }
10 store["items"].append(new item)
11 new item, 201
12 {"message": "Store not found"}, 404

e Key Points:

= |terate over stores to find a matching name.
m Return 404 if the store does not exist.

Retrieving a Specific
Store: GET
/store/<name>

e Purpose: Return the complete store data for a
given store name.
e Endpoint Code:

get_store(name):
store stores:
store["name"] == name:
store
{"message": "Store not found"}, 404

SO Ul WD -

e Usage: Clients can retrieve detailed information
about a specific store.

Retrieving Store Items:
GET
/store/<name>/item

e Objective: Provide a list of items for a specific
store.
e Endpoint Code:

get_store_items(name):
store stores:
store["name"] == name:
{"items": store["items"]}
{"message": "Store not found"}, 404

SO Ul WD -

e Design Note: Returning an object allows future
expansion (e.g., adding metadata).

Design Considerations &
Error Handling

e Returning JSON Objects vs. Lists:

= Objects offer flexibility (e.g., adding messages or
metadata).

= Consistency in APl responses aids client
development.

e Error Handling:

m Use proper HTTP status codes (e.g., 404 for not
found).

= Provide informative messages to guide AP|
users.

e Scalability: Prepare for future changes like
integrating a database.

Summary & Next Steps

e Key Takeaways:

= Chapter 2: Mastered Python decorators to
secure and extend function behavior.

= Chapter 3: Built a basic REST API with Flask
using GET and POST endpoints.

= JSON is essential for client-server
communication.

m Testing with tools like Insomnia ensures
reliability.

