
Intro to System
Design Theory

Kay Ashaolu - Instructor
Aishwarya Sriram - TA

All Digital Data: Zeros
and Ones
Fact:
All digital data is made up of zeros and ones.

Every computer, smartphone, and digital device
operates on binary.
This simple foundation supports all complex
systems.

The Binary System
Fundamentals

Binary Digits: 0 and 1 represent two states.
0: Off / No current
1: On / Current flowing

These states form the basic language of computers.

Transistors: The Building
Blocks

What are Transistors?
Semiconductor devices that act as switches.
Role:

Allow or block the flow of electrical current.
Represent binary data (0 for off, 1 for on).

Early Computers &
Binary

Early systems used binary principles directly.
Punch Cards:

Physical cards with holes to represent 1s
(punched) and 0s (not punched).
Time-consuming and error-prone, but
foundational.

Evolution: Low-Level to
High-Level Languages

Low-Level:
Assembly language, closer to machine code.

High-Level:
Languages like Fortran, C++, Python.

Key Insight:
Regardless of abstraction, all code ultimately
becomes binary.

Building Blocks: From
Code to Systems

Concept:
Use modular, reusable components to build
complex systems.
Analogy:
Just as functions build applications, system
components combine to form robust architectures.

Core Computer
Components

Task-Focused:
CPU: Executes instructions.
GPU: Renders graphics and performs complex
computations.

Storage-Focused:
RAM: Fast, volatile memory for temporary data.
Disk Storage: Non-volatile memory for long-
term data retention.

Task-Focused
Components: CPU &
GPU

CPU (Central Processing Unit):
Performs arithmetic and logic operations.
Executes binary instructions.

GPU (Graphics Processing Unit):
Highly efficient at mathematical calculations.
Key for rendering and machine learning tasks.

Storage-Focused
Components: RAM &
Disk

RAM (Random Access Memory):
Volatile memory: Loses data when powered off.
Fast read/write for intermediate processing.

Disk Storage:
Non-volatile: Retains data without power.
Larger capacity but slower access compared to
RAM.

Data Representation:
Storage vs. Tasks

Storage:
Binary data organized as numbers, text, images.
Tasks:
Binary instructions that tell the computer what to
do.
Core Idea:
Both storage and tasks are based on zeros and
ones.

Storage

Introduction to Data
Structures

Purpose:
Organize and manage binary data effectively.
Key Benefit:
Transform raw bits into meaningful information.
Examples:
Arrays, dictionaries, trees, and graphs.

Arrays, Lists, & Vectors
Definition:
Linear sequences of data, indexed by numbers.
Key Points:

Easy indexing (e.g., accessing the 0th element).
Efficient for ordered data.

Visual Example:
[A, B, C, D] where index 0 = A, index 1 = B, etc.

Dictionaries & Objects
Definition:
Key-value paired data structures.
Advantages:

Descriptive keys (like a real dictionary).
Easy access to complex data.

Example (Python):

person = {
 "name": "Alice",
 "age": 29,
 "height": "5ft 6in"
}
print(person["name"]) # Output: Alice

1
2
3
4
5
6

Trees & Graphs:
Modeling Relationships

Trees:
Hierarchical data (e.g., family trees).
Graphs:
More general networks (e.g., social connections).
Use Case:
Efficiently representing relationships between
entities.

Trade-offs in Data
Structures

Arrays:
Fast indexing, simple memory layout.

Dictionaries:
Flexible, descriptive access.

Trees/Graphs:
Ideal for modeling complex relationships.

Decision Criteria:
Consider access patterns, memory usage, and
scalability.

Tasks

Understanding Tasks in
Computing

Definition:
A task is a unit of work that transforms data.
Key Concept:
Tasks are executed by the CPU and represented in
binary.
Example:
A function performing a calculation.

Task Execution: From
Instructions to Action

Process:
1. Fetch: CPU retrieves binary instructions.
2. Execute: Performs arithmetic, logic, and data

movement.
3. Output: Produces a result.

Result:
Raw data is transformed into meaningful output.

Functions as Tasks
Functions encapsulate tasks.
Characteristics:

Receive input parameters.
Execute a set of instructions.
Return a result.

Key Insight:
Modular functions are the building blocks of
complex systems.

Example: Addition
Function in Python

def add(x, y):
 result = x + y # Perform addition
 return result

Using the function
sum_value = add(3, 4)
print(sum_value) # Output: 7

1
2
3
4
5
6
7

Explanation:
The function receives two inputs, processes them,
and returns the sum.

Storage and Tasks as
Building Blocks

Storage & Tasks:
Integration in Systems

Storage:
Provides the data.
Tasks:
Operate on that data.
Combined Effect:
Creating building blocks for system design.
Example:
A function (task) that manipulates data stored in
arrays or dictionaries.

Modularity in System
Design

Key Principle:
Combine smaller tasks and data structures to build
larger systems.
Benefits:

Easier debugging.
Enhanced maintainability.
Scalable and extendable architectures.

Focus:
Designing systems with clear, well-defined building
blocks.

Real-World Analogy:
Recipes & Ingredients

Recipe:
Represents a task or function.
Ingredients:
Represent the data (storage).
Analogy:
Just as a recipe transforms ingredients into a dish,
functions transform raw data into useful outputs.

Recap: Key Concepts
Covered

Binary Foundation:
Everything is zeros and ones.
Data Structures:
Arrays, dictionaries, trees, and graphs organize
data.
Tasks:
Functions and instructions transform data.
System Design:
Integrates storage and tasks into modular building
blocks.

Questions?

