Intro to System
Design Theory

Kay Ashaolu - Instructor
Aishwarya Sriram - TA

All Digital Data: Zeros
and Ones

Fact:
All digital data is made up of zeros and ones.
e Every computer, smartphone, and digital device

operates on binary.
e This simple foundation supports all complex

systems.

The Binary System
Fundamentals

e Binary Digits: 0 and 1 represent two states.

= 0: Off / No current
= 1: On / Current flowing

e These states form the basic language of computers.

Transistors: The Building
Blocks

e What are Transistors?
Semiconductor devices that act as switches.
e Role:

= Allow or block the flow of electrical current.
= Represent binary data (0 for off, 1 for on).

Early Computers &
Binary

e Early systems used binary principles directly.
e Punch Cards:

= Physical cards with holes to represent 1s
(punched) and Os (not punched).

= Time-consuming and error-prone, but
foundational.

Evolution: Low-Level to
High-Level Languages

e Low-Level:
= Assembly language, closer to machine code.
e High-Level:
= | anguages like Fortran, C++, Python.
e Key Insight:
Regardless of abstraction, all code ultimately
becomes binary.

Building Blocks: From
Code to Systems

e Concept:
Use modular, reusable components to build
complex systems.

e Analogy:
Just as functions build applications, system
components combine to form robust architectures.

Core Computer
Components

e Task-Focused:

= CPU: Executes instructions.
= GPU: Renders graphics and performs complex
computations.

e Storage-Focused:

= RAM: Fast, volatile memory for temporary data.
= Disk Storage: Non-volatile memory for long-
term data retention.

Task-Focused
Components: CPU &
GPU

e CPU (Central Processing Unit):

= Performs arithmetic and logic operations.
= Executes binary instructions.

e GPU (Graphics Processing Unit):

= Highly efficient at mathematical calculations.
= Key for rendering and machine learning tasks.

Storage-Focused
Components: RAM &
Disk

e RAM (Random Access Memory):

= Volatile memory: Loses data when powered off.
= Fast read/write for intermediate processing.

e Disk Storage:

= Non-volatile: Retains data without power.
= | arger capacity but slower access compared to
RAM.

Data Representation:
Storage vs. Tasks

e Storage:
Binary data organized as numbers, text, images.
e Tasks:
Binary instructions that tell the computer what to
do.
e Core ldea:
Both storage and tasks are based on zeros and
ones.

Storage

Introduction to Data
Structures

e Purpose:
Organize and manage binary data effectively.

e Key Benefit:
Transform raw bits into meaningful information.

e Examples:
Arrays, dictionaries, trees, and graphs.

Arrays, Lists, & Vectors

e Definition:
Linear sequences of data, indexed by numbers.
e Key Points:

= Easy indexing (e.g., accessing the Oth element).
= Efficient for ordered data.

e Visual Example:
[A, B, C, D]whereindex 0 =A, index 1 =B, etc.

Dictionaries & Objects

e Definition:
Key-value paired data structures.
e Advantages:

m Descriptive keys (like a real dictionary).
= Fasy access to complex data.

e Example (Python):

1 person = {

2 "name": "Alice",

3 "age": 29,

4 "height": "5ft 6in"
5

6

}
print(person["name"])

Trees & Graphs:
Modeling Relationships

e Trees:

Hierarchical data (e.g., family trees).
e Graphs:

More general networks (e.g., social connections).
e Use Case:

Efficiently representing relationships between
entities.

Trade-offs in Data
Structures

e Arrays:
= Fast indexing, simple memory layout.
e Dictionaries:
= Flexible, descriptive access.
e Trees/Graphs:
= |deal for modeling complex relationships.
e Decision Criteria:

= Consider access patterns, memory usage, and
scalability.

Tasks

Understanding Tasks in
Computing

e Definition:
A task is a unit of work that transforms data.
o Key Concept:
Tasks are executed by the CPU and represented in
binary.
e Example:
A function performing a calculation.

Task Execution: From
Instructions to Action

e Process:

1. Fetch: CPU retrieves binary instructions.

2. Execute: Performs arithmetic, logic, and data
movement.

3. Output: Produces a result.

e Result:
Raw data is transformed into meaningful output.

Functions as Tasks

e Functions encapsulate tasks.
e Characteristics:

m Receive input parameters.
= Execute a set of instructions.
= Return a result.
e Key Insight:
Modular functions are the building blocks of
complex systems.

Example: Addition
Function in Python

1 add(x, v):

2 result = x + y
3 result
4
5

6 sum value = add(3, 4)
7 print(sum value)

e Explanation:
The function receives two inputs, processes them,
and returns the sum.

Storage and Tasks as
Building Blocks

Storage & Tasks:
Integration in Systems

e Storage:
Provides the data.
e Tasks:
Operate on that data.
e Combined Effect:
Creating building blocks for system design.
e Example:
A function (task) that manipulates data stored in
arrays or dictionaries.

Modularity in System
Design

e Key Principle:
Combine smaller tasks and data structures to build

larger systems.
e Benefits:

= Fasier debugging.
= Enhanced maintainability.
m Scalable and extendable architectures.

e Focus:
Designing systems with clear, well-defined building
blocks.

Real-World Analogy:
Recipes & Ingredients

e Recipe:

Represents a task or function.
e Ingredients:

Represent the data (storage).
e Analogy:

Just as a recipe transforms ingredients into a dish,

functions transform raw data into useful outputs.

Recap: Key Concepts
Covered

e Binary Foundation:
Everything is zeros and ones.

e Data Structures:
Arrays, dictionaries, trees, and graphs organize
data.

e Tasks:
Functions and instructions transform data.

e System Design:
Integrates storage and tasks into modular building
blocks.

Questions?

