
Asynchronous Task
Queues

Kay Ashaolu - Instructor
Aishwarya Sriram - TA

Chapter 2: A Full Python
Refresher
Object-Oriented Programming
Fundamentals

Transition from procedural to object-based design
Emphasis on encapsulation, inheritance, and
composition
Practical coding examples for real-world analogies

Introduction to Object-
Oriented Programming
(OOP)

OOP models real-world entities (students, devices,
etc.)
Shifts code from procedural (functions + data) to
encapsulated objects
Improves code organization & readability

Data: Dictionary vs.
Object
Traditional Approach:

student = {"name": "Rolf", "grades": (90, 88, 87)}
def average(seq):
 return sum(seq) / len(seq)
print(average(student["grades"]))

1
2
3
4

Limitation: Lacks semantic connection between data
and behavior

Defining a Python Class
Use the class keyword to create a blueprint
The __init__ method initializes instance
attributes
The self parameter references the instance

class Student:
 def __init__(self):
 self.name = "Rolf"
 self.grades = (90, 88, 87)

1
2
3
4

Adding Behavior with
Methods

Methods are functions defined within a class
Access & modify instance attributes via self
Encapsulates data and functionality together

class Student:
 def __init__(self):
 self.name = "Rolf"
 self.grades = (90, 88, 87)

 def average_grade(self):
 return sum(self.grades) / len(self.grades)

1
2
3
4
5
6
7

Example: Calculating a
Student's Average

Create a Student object and call its method

student = Student()
print(student.average_grade()) # Outputs: 88.33...

1
2

Emphasizes encapsulated data & behavior

Class Inheritance in
Python

Inheritance allows a class to derive properties and
methods from another
Models “is-a” relationships (e.g., Printer is a Device)
Reduces redundancy by reusing code

class Device:
 def __init__(self, name, connected_by):
 self.name = name
 self.connected_by = connected_by
 self.connected = True

 def __str__(self):
 return f"device {self.name} {self.connected_by}"

 def disconnect(self):
 self.connected = False
 print("disconnected")

1
2
3
4
5
6
7
8
9

10
11
12

Extending with the
Printer Class

Printer inherits from Device and adds extra
features

class Printer(Device):
 def __init__(self, name, connected_by, capacity):
 super().__init__(name, connected_by)
 self.capacity = capacity
 self.remaining_pages = capacity

 def __str__(self):
 return f"{super().__str__()} - remaining pages {self.remaining_pa

 def print_pages(self, pages):
 if not self.connected:
 print("printer is not connected")
 return
 print(f"printing {pages} pages")
 self.remaining_pages -= pages

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Class Composition vs.
Inheritance
When to Use Composition

Conceptual Clarity:
A Book is not a Bookshelf.
Bookshelf has-a collection of Book objects, rather
than being one.

Technical Benefits:
Modularity: Changes in one component (e.g., Book)
do not force changes in the container (Bookshelf).
Flexibility: Easier to mix and match behaviors
without rigid parent-child constraints.
Reduced Coupling: Keeps classes focused on their
primary responsibilities..

Class Composition vs.
Inheritance
When to Use Composition

Example Comparison:
Inheritance: A Book inheriting from Bookshelf
forces unnecessary attributes.
Composition: A Bookshelf holds Book objects,
reflecting real-world relationships.

Composition Example:
Bookshelf & Book

Using Composition:

class Book:
 def __init__(self, title):
 self.title = title

 def __str__(self):
 return f"Book: {self.title}"

class Bookshelf:
 def __init__(self, *books):
 self.books = books

 def __str__(self):
 return f"Bookshelf with {len(self.books)} books"

1
2
3
4
5
6
7
8
9

10
11
12
13

Clear separation: A bookshelf contains books; a
book remains an independent entity.

Summary: Chapter 2
(Python OOP)

Transition from dictionaries to objects
Use of methods, inheritance, and composition
Composition offers flexibility and modularity over
inheritance in many scenarios

Chapter 12: Task Queues
with rq & Sending
Emails
Background Processing in Web
Architecture

Offload heavy or time-consuming tasks
Enhance API responsiveness by processing tasks
asynchronously
Use of Redis as a message broker with the rq
library

What is a Queue Data
Structure?

Definition:
A queue is a First-In-First-Out (FIFO) data
structure
Items are added at the rear and removed from
the front

What is a Queue Data
Structure?

Comparison:
Dictionary: Key-value mapping with fast lookup
Array (List): Ordered collection accessed by
index
Queue: Enforces order for processing tasks
sequentially

What is a Queue Data
Structure?

Real-World Analogy:
Think of a queue as a line at a ticket counter:
first come, first served.

Setting Up Redis for
Task Queues

Redis acts as an in-memory data store and
message broker
Use Render.com or Docker to host Redis

Example Docker command to run Redis locally:
docker run -p 6379:6379 redis

1
2

Integrating rq with a
Flask Application

rq (Redis Queue): A Python library for managing
task queues
Enqueue tasks from your Flask app to be processed
asynchronously
Steps include:
1. Installing rq (pip install rq)
2. Connecting to Redis
3. Enqueuing background tasks (e.g., sending

emails)

Code Example:
Enqueueing Tasks

tasks.py: Define the email sending task

import os
from dotenv import load_dotenv
load_dotenv()

def send_user_registration_email(email, username):
 # Simulated email sending function
 print(f"Sending registration email to {email} for {username}")

1
2
3
4
5
6
7

Flask App Integration
with rq

app.py: Connect Flask with Redis and enqueue
tasks

import os
import redis
from rq import Queue
from flask import Flask, request, current_app
from tasks import send_user_registration_email

app = Flask(__name__)
connection = redis.from_url(os.getenv("REDIS_URL"))
app.queue = Queue('emails', connection=connection)

@app.route('/register', methods=['POST'])
def register():
 # ... (user registration logic)
 email = request.form['email']
 username = request.form['username']
 current_app.queue.enqueue(send_user_registration_email, email, username)
 return "User created successfully", 201

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Processing Background
Tasks with rq Worker

Run the worker as a separate process to consume
queued tasks
The worker monitors the Redis queue and
processes tasks asynchronously

Docker example command:
docker run -w /app rest-api-recording-email sh -c "rq worker -u $REDIS_URL emails"

1
2

Recap: Chapter 12 (Task
Queues)

Task Queue: Offloads heavy tasks to improve API
responsiveness
Redis: In-memory data store serving as the broker
rq Library: Simplifies task management and
background processing
Workflow: Enqueue tasks from Flask → Worker
processes tasks → e.g., Sending emails

Questions?

